
1

Computer Science Seminar

Writing a 3rd or 4th Year Project Report

Dr Maggie Charles, Language Centre

2

Outline of the Seminar

1. Parts of the Report

2. Introduction

3. Background and Requirements

4. Design and Testing

5. Conclusion

6. Abstract

7. Editing and Revising

8. Hints on Writing

9. Avoiding Plagiarism

3

Parts of a Project Report

 Title page

 Abstract

 Acknowledgements (optional)

 Table of contents

 Chapters 1, 2 etc.

 References

 Appendices

4

Introduction

 Objectives and what makes them worthwhile

 Achievements

 A road map of the rest of the report

Three stages or moves

1. General information

2. Establishing the problem

3. Specific statements about your own project

5

Introduction (1)

MOVE 1 BACKGROUND

1. Why the area is important

2. Giving background information

3. Reviewing previous research

MOVE 2 INDICATING A PROBLEM OR NEED

6

Introduction (2)

MOVE 3 PRESENTING THE PROJECT

1. Purposes, aims or objectives

2. Work carried out

3. Justification or importance of the project

4. Outline of the structure of the report

7

Recycling

 Moves and Steps may recycle

 Moves

 Move 1 Move 2 Move 1 Move 2 Move 3

 Steps Within Move 3

 Step 1 Step 2 Step 1 Step 2 Step 3 Step 4

 Steps may be omitted

8

TASK 1: Extract A (1)

Introduction: Automatic Marking of Exam Papers Using Semantic Parsing

'Automated Essay Scoring' has been a large area of research since the 1960s.

In such a process, a variety of 'features' are extracted from essays, such as word

and sentence length and the structure of sentences, before the data is

collaborated to provide a final classification [SHERMIS 03].

'Automated Exam Scoring' is a more objective mode of classification, in which

answers are analysed for the presence of concrete facts or statements instead of

using any continuous measure. This has been the subject of much research in

the Computational Linguistics department at Oxford University, using an online

study as the source of data, in which students completed a GCSE Biology paper

[PULMAN 05]. The techniques employed are varied, but fall into two main

categories. One simulating a human style marker defines the marking scheme via

patterns inputted by an administrator, allowing for as many variants of an answer

as possible. The clear disadvantage of this method is the hours of work required

to painstakingly write these patterns, but this method yields high accuracy.

Average accuracy in excess of 95% was obtained.

9

TASK 1: Extract A (1)

Introduction: Automatic Marking of Exam Papers Using Semantic Parsing

'Automated Essay Scoring' has been a large area of research since the

1960s. In such a process, a variety of 'features' are extracted from essays, such

as word and sentence length and the structure of sentences, before the data is

collaborated to provide a final classification [SHERMIS 03].

'Automated Exam Scoring' is a more objective mode of classification, in which

answers are analysed for the presence of concrete facts or statements instead of

using any continuous measure. This has been the subject of much research in

the Computational Linguistics department at Oxford University, using an online

study as the source of data, in which students completed a GCSE Biology paper

[PULMAN 05]. The techniques employed are varied, but fall into two main

categories. One simulating a human style marker defines the marking scheme via

patterns inputted by an administrator, allowing for as many variants of an answer

as possible. The clear disadvantage of this method is the hours of work

required to painstakingly write these patterns, but this method yields high

accuracy. Average accuracy in excess of 95% was obtained.

10

TASK 1: Extract A (2)

The latter method adopts a machine learning approach using a set of pre-

marked answers for the training process. [PULMAN 06] experimented with a

system in which the answers are treated as a 'bag of words' with no semantic

structure incorporated. A technique known as 'k nearest neighbour (KNN)' was

used…

This naive method is subject to a number of problems, as highlighted by

Professor Stephen Pulman…

"You can't just look for keywords, because the student might have the right

keywords in the wrong configuration, or they might use keywords equivalents”.

Thus if the answer requirement is a statement such as 'the cat chased the

mouse', then an answer of 'the mouse chased the cat' would be accepted despite

the clear semantic inequality, due to the identical set of words.

This project aims to extend this method by incorporating the semantic structure

of sentences, so that for the above example 'the mouse chased the cat' would be

marked as incorrect, whereas 'the mouse was chased by the cat' would be

marked as correct.

11

TASK 1: Extract A (2)

The latter method adopts a machine learning approach using a set of pre-

marked answers for the training process. [PULMAN 06] experimented with a

system in which the answers are treated as a 'bag of words' with no semantic

structure incorporated. A technique known as 'k nearest neighbour (KNN)' was

used…

This naive method is subject to a number of problems, as highlighted by

Professor Stephen Pulman…

"You can't just look for keywords, because the student might have the right

keywords in the wrong configuration, or they might use keywords equivalents”.

Thus if the answer requirement is a statement such as 'the cat chased the

mouse', then an answer of 'the mouse chased the cat' would be accepted despite

the clear semantic inequality, due to the identical set of words.

This project aims to extend this method by incorporating the semantic

structure of sentences, so that for the above example 'the mouse chased the cat'

would be marked as incorrect, whereas 'the mouse was chased by the cat' would

be marked as correct.

12

TASK 1: Extract A (3)

CAndC Parser & Boxer

The CAndC (Clark and Curran) parser uses statistical methods

and 'supertagging' to convert English sentences into a tree

representing their structure, as detailed in [CLARK 07]…The output

of the parser is a CCG (Combinatory Categorial Grammar) file,

representing this sentence structure.

Alone, this representation is insufficient for machine learning use,

given that the semantic interpretation of the sentences is our

concern. We therefore use a tool called Boxer, which uses Prolog to

convert the CCG into a form called DRS (Discourse Representation

Structure). This is compatible with first-order logic, and thus can be

used to make reasoned logical deductions (with its application

extending to other systems such as Question Answering).

13

TASK 1: Extract A (3)

CAndC Parser & Boxer

The CAndC (Clark and Curran) parser uses statistical methods

and 'supertagging' to convert English sentences into a tree

representing their structure, as detailed in [CLARK 07]…The

output of the parser is a CCG (Combinatory Categorial Grammar)

file, representing this sentence structure.

Alone, this representation is insufficient for machine learning

use, given that the semantic interpretation of the sentences is our

concern. We therefore use a tool called Boxer, which uses Prolog

to convert the CCG into a form called DRS (Discourse

Representation Structure). This is compatible with first-order

logic, and thus can be used to make reasoned logical

deductions (with its application extending to other systems such as

Question Answering).

14

3. Background and Requirements

Background

 Information necessary for the examiner to

understand your project

 More specific than background given in the

Introduction

Requirements

 Gives the program requirements

 These chapters prepare the ground for the

Design chapter.

15

Extract B Background

3D Modelling in Java

The 3D modelling system required for this project must be

cleanly accessible from within our Java code, allow for dynamic

changes to the 3D world, and provide a high-level intuitive

interface for doing so. What we require is a system which can

interface cleanly with the Eclipse window, and allow user-

interaction with the underlying 3D objects.

One such three-dimensional modelling language satisfying

these requirements is Java3D. The reason for this is that it

provides a way to create a three-dimensional scene, completely

in Java, and in a high-level manner…

16

Extract B Requirements

3D Modelling in Java

In designing any program, one must consider the

requirements, in terms of fulfilling and achieving certain goals,

whilst also adhering to the requirements in efficiency and

usability enforced by an end-user. I will now discuss what

these requirements are:

Accuracy… Efficiency… Usability… Extensibility…

Integration…

This list prescribes themes which should feature throughout

the design process, whilst giving an overview of what we plan

on achieving. We will now continue to describe various

aspects of the design which aims to meet these requirements.

17

4. Design and Testing

Design

 How you broke the problem down into classes

 Interesting algorithms or data structures used

 Description of the user interface

 Why the design of your program should solve the
problem

 Alternative designs considered, and why they
were less appropriate

Testing

 Strategy used to test the program

 How the results compared with those expected

18

Extract C Design

4.1 Preliminaries

This section will discuss the methods used in setting up a framework to allow

for the dynamic placement of 3D visual objects.

4.1.1 Creating the Eclipse Plug-in

Creating an Eclipse plug-in is a straightforward process. Dave Springgay gives

a good outline of the processes necessary [13]. However, essentially we are

concerned with creating an Eclipse 'View'…

4.5.5 A Different Approach to Determining Object Size

As we have seen in the Divide and Resize algorithm, the visual objects size can

play a vital role in the usability of the general layout. The halving method

employed in the divide and resize algorithm seems rather naive, even if it works

well visually. Given that the model has access to an importance score for each

object, it would seem nonsensical for two objects to be of the same size, when

one is vastly more important than the other. Hence, I suggest a sizing algorithm

based solely on the importance of the object…

19

Extract C Design

4.1 Preliminaries

This section will discuss the methods used in setting up a framework to

allow for the dynamic placement of 3D visual objects.

4.1.1 Creating the Eclipse Plug-in

Creating an Eclipse plug-in is a straightforward process. Dave Springgay gives

a good outline of the processes necessary [13]. However, essentially we are

concerned with creating an Eclipse 'View'…

4.5.5 A Different Approach to Determining Object Size

As we have seen in the Divide and Resize algorithm, the visual objects size

can play a vital role in the usability of the general layout. The halving method

employed in the divide and resize algorithm seems rather naive, even if it

works well visually. Given that the model has access to an importance score for

each object, it would seem nonsensical for two objects to be of the same

size, when one is vastly more important than the other. Hence, I suggest a

sizing algorithm based solely on the importance of the object…

20

Extract D Testing
We have already seen some screen shots of the working program; however, we

provide two stringent tests for our program to ensure it works as intended, along

with a test rig to fully analyse the program. In both test programs, I will run

through the whole series of options available to the user, and ensure its

correctness. However, I will also demonstrate its ability to visualise code, and

hopefully provide valuable insights whilst debugging.

5.1 Simple Program -BFS and DFS using the Visitor Pattern

This test program begins by creating an underlying tree structure…

This kind of debugging is intuitive, and simple to do within this framework. If you

have an intuitive understanding of what the underlying model in your program

should look like, it is fairly straight forward to spot bugs like this in small code

samples. Assuming a larger program is in use, the user must delve a little deeper

into the part of the graph which they suspect the bug to exist in. This is obviously

heavily aided by the JDT debugger itself. However, this test still shows the

usability of the code in a small program, and shows that the code can cope with

the different types of back links and cross links that can occur in a memory

graph.

21

Extract D Testing
We have already seen some screen shots of the working program; however, we

provide two stringent tests for our program to ensure it works as intended,

along with a test rig to fully analyse the program. In both test programs, I will

run through the whole series of options available to the user, and ensure its

correctness. However, I will also demonstrate its ability to visualise code, and

hopefully provide valuable insights whilst debugging.

5.1 Simple Program -BFS and DFS using the Visitor Pattern

This test program begins by creating an underlying tree structure…

This kind of debugging is intuitive, and simple to do within this framework. If

you have an intuitive understanding of what the underlying model in your

program should look like, it is fairly straight forward to spot bugs like this in

small code samples. Assuming a larger program is in use, the user must delve

a little deeper into the part of the graph which they suspect the bug to exist in.

This is obviously heavily aided by the JDT debugger itself. However, this test

still shows the usability of the code in a small program, and shows that the

code can cope with the different types of back links and cross links that can

occur in a memory graph.

22

5. Conclusions

 Summary of your achievements

 Critical appraisal

 What you have learnt from the project

 Three stages or moves

 Moving from specific to more general

statements

23

Moves in the Conclusion

Move 1: Summary

Move 2: Evaluation

Achievements and limitations

How far the aims of the project have been realised

Move 3: Future Work

Extensions of the project

May deal with the limitations noted in the project

24

Task 2 Extract E Conclusions (1)

Efficient Local Type Inference

I have successfully developed a novel local type inference algorithm from an

initial specification of the problem. I first provide an intuitive derivation of the

algorithm and then offer a formal proof of correctness. I go on to offer

generalizations to the algorithm, supporting more language features, and

finally achieve local type inference in Jimple.

I have carried out careful experimental evaluation to compare the performance

of my algorithm to that of Gagnon et al. [2], which is the only implemented

alternative for local type inference in JimpIe. Experiments showed a typical 4-

fold to 5-fold execution time improvement across a wide range of benchmarks,

and a much greater increase where very large methods exist. Experiments

were not confined to code compiled from Java, and include code compiled

from very different languages like Scala and Scheme. My algorithm is proven

to always give a tightest possible typing. Experiments show that Gagnon's

algorithm rarely but sometimes gives suboptimal typings.

25

Task 2 Extract E Conclusions (1)

Efficient Local Type Inference

I have successfully developed a novel local type inference algorithm from

an initial specification of the problem. I first provide an intuitive derivation of

the algorithm and then offer a formal proof of correctness. I go on to offer

generalizations to the algorithm, supporting more language features, and

finally achieve local type inference in Jimple.

I have carried out careful experimental evaluation to compare the

performance of my algorithm to that of Gagnon et al. [2], which is the only

implemented alternative for local type inference in JimpIe. Experiments

showed a typical 4-fold to 5-fold execution time improvement across a

wide range of benchmarks, and a much greater increase where very large

methods exist. Experiments were not confined to code compiled from Java,

and include code compiled from very different languages like Scala and

Scheme. My algorithm is proven to always give a tightest possible

typing. Experiments show that Gagnon's algorithm rarely but sometimes

gives suboptimal typings.

26

Task 2 Extract E Conclusions (2)

The theoretical worst case complexity of my algorithm is

exponential: whereas Gagnon's algorithm is polynomial. But

experiments of execution time against method length show a

typically linear trend whereas Gagnon's show a cubic trend. My

algorithm is very much optimized for type hierarchies in which

most pairs of types have a single least-common-ancestor,

which probably includes most Java bytecode in existence

today. Of course if a language appeared that made much

greater use of multiple inheritance then my algorithm may not

be appropriate. But as a practical 'workhorse' implementation I

believe this is seriously worthy of consideration. And this is

supported by the decision of the Soot framework's maintainers

to replace their existing type inference algorithm with mine.

27

Task 2 Extract E Conclusions (2)

The theoretical worst case complexity of my algorithm is

exponential: whereas Gagnon's algorithm is polynomial. But

experiments of execution time against method length show a

typically linear trend whereas Gagnon's show a cubic trend. My

algorithm is very much optimized for type hierarchies in which

most pairs of types have a single least-common-ancestor,

which probably includes most Java bytecode in existence

today. Of course if a language appeared that made much

greater use of multiple inheritance then my algorithm may

not be appropriate. But as a practical 'workhorse'

implementation I believe this is seriously worthy of

consideration. And this is supported by the decision of the

Soot framework's maintainers to replace their existing type

inference algorithm with mine.

28

Task 2 Extract E Conclusions (3)

7.1 Future Work

The greatest scope for future work is extending the

application of my algorithm from local type inference to global

type inference. This involves inferring types for method

signatures and public fields as well as local variables. The

global type inference problem is currently an area of active

research, most of which builds upon the work of Palsberg

and Schwartzbach [6]. One could begin by treating method

parameters, return values and fields in the same way as local

variables, and then using my algorithm on the program as a

whole.

7.2 Personal Report…

29

Task 2 Extract E Conclusions (3)

7.1 Future Work

The greatest scope for future work is extending the

application of my algorithm from local type inference to global

type inference. This involves inferring types for method

signatures and public fields as well as local variables. The

global type inference problem is currently an area of

active research, most of which builds upon the work of

Palsberg and Schwartzbach [6]. One could begin by

treating method parameters, return values and fields in the

same way as local variables, and then using my algorithm on

the program as a whole.

7.2 Personal Report…

30

6. Abstract

 A brief description of what you did

 Use 1 or 2 sentences to summarise each
chapter of your report

 About 200 words is probably enough

 Keep language and sentence structure simple

 The reader should be able to obtain
information quickly and efficiently

31

Moves in an Abstract

Not all moves will be present in every abstract.

1. Background to the project

2. Purpose of the project

3. Problem tackled

4. Work carried out

5. Results

6. Conclusions or implications

7. Achievements of the project

32

Task 3 Extract F Abstract

Visualising Memory Graphs: Interactive Debugging using Java3D

This report describes a new way of visualising Java run-time objects, and

their associated memory graphs. Using the Eclipse debugging framework,

alongside the Java3D platform, it aims to describe methods for extracting

useful debugging information from a running program and displaying this

information in a three-dimensional space. The focus of this report deals

with how using a three-dimensional space can enhance the debugging

experience, introduce interesting visualisations of programs, and create a

basis for future debugging in this way. The result is a user-friendly,

efficient system which can visualise large programs in a relatively small

amount of screen real-estate. This report shows that three-dimensional

visualisation can be a useful tool for debugging, program analysis, and a

viable alternative to traditional solutions.

(121 words)

33

Task 3 Extract F Abstract

Visualising Memory Graphs: Interactive Debugging using Java3D

This report describes a new way of visualising Java run-time objects,

and their associated memory graphs. Using the Eclipse debugging

framework, alongside the Java3D platform, it aims to describe methods

for extracting useful debugging information from a running program and

displaying this information in a three-dimensional space. The focus of

this report deals with how using a three-dimensional space can

enhance the debugging experience, introduce interesting visualisations

of programs, and create a basis for future debugging in this way. The

result is a user-friendly, efficient system which can visualise large

programs in a relatively small amount of screen real-estate. This report

shows that three-dimensional visualisation can be a useful tool for

debugging, program analysis, and a viable alternative to traditional

solutions. (121 words)

34

Editing and Revising (1)

Communication

 What does your reader already know?

 What do you need to explain?

 Have you shown the examiners that you understand

 the material?

 Are your explanations clear and understandable?

 Is any necessary information missing?

 Are there any redundant parts of the report?

 Have you previewed the contents of each chapter?

 Have you given a brief summary of what you have

 said at the end of each chapter?

35

Editing and Revising (2)

Ideas and Organisation

 Have you introduced your subject

appropriately?

 Have you developed it in a well-organised

and logical way?

 Have you come to a conclusion?

 Are the relationships between ideas clear

and logical?

 Have you explicitly signalled the connections

to the reader?

36

Editing and Revising (3)

Language

 Check for grammar problems that could interfere with

understanding

 Are your sentences complete, with a subject and a verb?

 Check that subjects and verbs agree.

 Check vocabulary for unnecessary repetition, misused

words, colloquialisms and informal language.

 Check punctuation for incomplete sentences and missing

or wrongly used commas.

 Check that paragraphing shows the organisation of your

ideas.

 Check for typographical errors and use a spellchecker.

37

Hints on Writing

 Plan how to organise your report. Divide each chapter into

sub-sections.

 Start with the part you find easiest.

 Get your ideas down on paper before you revise and edit.

 Use multiple revisions.

 If you have a problem, leave it and return later.

 Print a draft version of each chapter for revision.

 Be critical. Read your report as though it was the work of

someone else.

 Exchange reports with another student and get their

comments.

38

Avoiding Plagiarism

 Source use is the use of other people’s work in

the writer’s own work.

 A Citation is a reference to the work of another

person.

 Plagiarism is the use of other people’s work and

the submission of it as though it were one’s own

work.

39

Transparent Source Use

The Responsibility of Transparency in Writing

The writer must use appropriate signals so that an experienced

academic reader can understand the actual relationship

between the source text and the new one.

The Responsibility of Transparency in Language

Language which is not signalled as a quotation is understood to be

original to the writer. If the content is marked with a citation, the

language is understood to be paraphrased, i.e., substantially and

independently reworded.

40

Two Types of Citation

 Quotation is the use of the exact words of another

person.

 It has quotation marks (’...’ or ”...”) and

 a reference to the original source with a page number.

 Paraphrase with reference is a substantial rewording of

an idea from another text.

 It should be composed autonomously.

 It has a reference to the original source.

41

Parts of a Reference

 Depend on the type of text cited (e.g. book,

conference paper, chapter in an edited volume,

journal article, website etc.)

The elements of a reference include:

 author; date; title of book or article; title of journal or

other work; place of publication; name of conference;

date of publication; page numbers; website address

and date of access

42

Why Do We Cite?

 To give credit to the person(s) who first put forward

the information that we are citing

 To have additional support for the points that we

make

 To strengthen our arguments and make it more

likely that our points will be accepted

 To discuss current issues in the field

 To position our work within the field

 So that the reader can locate and read the original

source

43

The Consequences of Inappropriate

Source Use

 The benefits of citation for the writer disappear.

 The benefits of citation for the reader disappear.

 The benefits of citation for the cited writer disappear.

 The result can look like plagiarism.

44

What You Can Do

 Think about the ways in which your text owes a debt

to other, earlier texts and acknowledge those debts.

 Select the right signals to achieve transparency of

source use.

 Be meticulous about taking notes.

 Know why you want to cite each source.

